

Native Imaging

This is an experiment in seeing how far you can get using platform-provided
packages such as GraphicsMagick, CoreImage, etc. to provide a PIL-like
interface but taking advantage of their support for more advanced features
such as threading, broader format support (including JPEG-2000),
vectorization, etc.

The goal is simple: a user should be able to install NativeImaging and do
something like this to a program which is currently using PIL:

from NativeImaging import get_image_class

Image = get_image_class("GraphicsMagick")

Status

[image: Build Status]
 [http://travis-ci.org/acdha/NativeImaging]
aware

Very fast JPEG 2000 thumbnail generation compared to GraphicsMagick. Requires
the non-OSS AWARE library: http://www.aware.com/imaging/jpeg2000.htm

GraphicsMagick

Currently supports typical web application usage: loading an image, resizing it
and saving the result. Testing reveals mixed results, beating PIL when
producing thumbnails from large TIFFs and underperforming when thumbnailing
equivalent JPEGs, both by about 2:1.

Both CPython and PyPy are supported, with PyPy seeing performance gains using the CFFI backend instead of
ctypes. Significant optimization gains are likely possible, particularly where the I/O functions marshall
data in and out of the non-filename-based APIs where data is currently being copied.

Jython

Currently supports basic usage: loading an image, resizing it, and saving the
result. Performance is generally quite decent as the Java Advanced Imaging API
is quite tuned, if somewhat baroque in design.

Table of Contents

	Common API

	AWARE Backend

	Graphics Magick Backend
	High-Level

	Low-Level

	Java Backend
	High-Level

Development

You’ll need to install Sphinx to build the documentation. For convenience, a
requirements-devel.pip file has been provided and you may simply use “pip
install -r requirements-devel.pip” to keep your dependencies current.

Common API

	
class NativeImaging.api.Image

	Base class for all NativeImaging backends

Should be compatible with PIL.Image or raise NotImplementedError()

	
convert(mode=None, data=None, dither=None, palette=0, colors=256)

	Convert to other pixel format

	
copy()

	Returns an exact copy of the current image which may be destructively
modified without affecting the original. Backends may choose to
implement Copy-On-Write for performance so callers should not expect
resource handles or object ids to change simply by calling copy().

	
crop(box=None)

	Return a cropped version of the image

	Parameters:	box – The crop rectangle, as a (left, upper, right, lower)-tuple.

	Return type:	:class:Image object

	
draft(mode, size)

	Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and
size. For example, you can use this method to convert a colour
JPEG to greyscale while loading it, or to extract a 128x192
version from a PCD file.

	
filter(filter)

	Apply environment filter to image

Filters this image using the given filter. For a list of available
filters, see the ImageFilter module.

	Parameters:	filter – Filter kernel.

	Return type:	:class:Image object

	
format = None

	

	
format_description = None

	

	
fromstring(data, decoder_name='raw', *args)

	Load data to image from binary string

	
getbands()

	Returns a tuple containing the name of each band in this image.
For example, getbands on an RGB image returns (“R”, “G”, “B”).

	Returns:	A tuple containing band names.

	
getbbox()

	Get bounding box of actual data (non-zero pixels) in image

Calculates the bounding box of the non-zero regions in the
image.

	Returns:	The bounding box is returned as a 4-tuple defining the
left, upper, right, and lower pixel coordinate. If the image
is completely empty, this method returns None.

	
getcolors(maxcolors=256)

	Get colors from image, up to given limit
Returns a list of colors used in this image.

	Parameters:	maxcolors – Maximum number of colors. If this number is
exceeded, this method returns None. The default limit is
256 colors.

	Returns:	An unsorted list of (count, pixel) values.

	
getdata(band=None)

	Get image data as sequence object

	
getextrema()

	Get min/max value

Gets the the minimum and maximum pixel values for each band in
the image.

	Returns:	For a single-band image, a 2-tuple containing the
minimum and maximum pixel value. For a multi-band image,
a tuple containing one 2-tuple for each band.

	
getpalette()

	Get palette contents

	Returns:	A list of color values [r, g, b, ...], or None if the
image has no palette.

	
getpixel(xy)

	Get pixel value

	Parameters:	xy – The coordinate, given as (x, y).

	Returns:	The pixel value. If the image is a multi-layer image,
this method returns a tuple.

	
getprojection()

	Get projection to x and y axes

Returns the horizontal and vertical projection.

	Returns:	Two sequences, indicating where there are non-zero
pixels along the X-axis and the Y-axis, respectively.

	
histogram(mask=None, extrema=None)

	Take histogram of image

Returns a histogram for the image. The histogram is returned as
a list of pixel counts, one for each pixel value in the source
image. If the image has more than one band, the histograms for
all bands are concatenated (for example, the histogram for an
“RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as a greyscale (“L”) image
by this method.

If a mask is provided, the method returns a histogram for those
parts of the image where the mask image is non-zero. The mask
image must have the same size as the image, and be either a
bi-level image (mode “1”) or a greyscale image (“L”).

	Parameters:	mask – An optional mask.

	Returns:	A list containing pixel counts.

	
im = None

	

	
info = {}

	

	
load()

	Explicitly load pixel data.

	
mode = ''

	

	
classmethod open(fp, mode='r')

	

	
palette = None

	

	
paste(im, box=None, mask=None)

	Paste other image into region

Pastes another image into this image. The box argument is either
a 2-tuple giving the upper left corner, a 4-tuple defining the
left, upper, right, and lower pixel coordinate, or None (same as
(0, 0)). If a 4-tuple is given, the size of the pasted image
must match the size of the region.

If the modes don’t match, the pasted image is converted to the
mode of this image (see the Image.convert() method for
details).

Instead of an image, the source can be a integer or tuple
containing pixel values. The method then fills the region
with the given colour. When creating RGB images, you can
also use colour strings as supported by the ImageColor module.

If a mask is given, this method updates only the regions
indicated by the mask. You can use either “1”, “L” or “RGBA”
images (in the latter case, the alpha band is used as mask).
Where the mask is 255, the given image is copied as is. Where
the mask is 0, the current value is preserved. Intermediate
values can be used for transparency effects.

Note that if you paste an “RGBA” image, the alpha band is
ignored. You can work around this by using the same image as
both source image and mask.

	Parameters:	
	im – Source image or pixel value (integer or tuple).

	box – An optional 4-tuple giving the region to paste into.
If a 2-tuple is used instead, it’s treated as the upper left
corner. If omitted or None, the source is pasted into the
upper left corner.

If an image is given as the second argument and there is no
third, the box defaults to (0, 0), and the second argument
is interpreted as a mask image.

	mask – An optional mask image.

	Return type:	:class:Image object

	
point(lut, mode=None)

	Maps this image through a lookup table or function.

	Parameters:	
	lut – A lookup table, containing 256 values per band in the
image. A function can be used instead, it should take a single
argument. The function is called once for each possible pixel
value, and the resulting table is applied to all bands of the
image.

	mode – Output mode (default is same as input). In the
current version, this can only be used if the source image
has mode “L” or “P”, and the output has mode “1”.

	Return type:	:class:Image object

	
putalpha(alpha)

	Set alpha layer
Adds or replaces the alpha layer in this image. If the image
does not have an alpha layer, it’s converted to “LA” or “RGBA”.
The new layer must be either “L” or “1”.

	Parameters:	im – The new alpha layer. This can either be an “L” or “1”
image having the same size as this image, or an integer or
other color value.

	
putdata(data, scale=1.0, offset=0.0)

	Put data from a sequence object into an image

Copies pixel data to this image. This method copies data from a
sequence object into the image, starting at the upper left
corner (0, 0), and continuing until either the image or the
sequence ends. The scale and offset values are used to adjust
the sequence values: pixel = value*scale + offset.

	Parameters:	
	data – A sequence object.

	scale – An optional scale value. The default is 1.0.

	offset – An optional offset value. The default is 0.0.

	
putpalette(data, rawmode='RGB')

	Put palette data into an image.

	
putpixel(xy, value)

	Modifies the pixel at the given position. The colour is given as a
single numerical value for single-band images, and a tuple for
multi-band images.

Note that this method is relatively slow. For more extensive changes,
use Image.paste() or the ImageDraw module instead.

	Parameters:	
	xy – The pixel coordinate, given as (x, y).

	value – The pixel value.

	
quantize(colors=256, method=0, kmeans=0, palette=None)

	

	
readonly = 0

	

	
resize(size, resample=0)

	Returns a resized copy of this image.

	Parameters:	
	size (tuple) – The requested size in pixels, as a 2-tuple:
(width, height).

	filter – An optional resampling filter. This can be
one of NEAREST (use nearest neighbour), BILINEAR
(linear interpolation in a 2x2 environment), BICUBIC
(cubic spline interpolation in a 4x4 environment), or
ANTIALIAS (a high-quality downsampling filter).

	Return type:	:class:Image object

	
rotate(angle, filter=0, expand=False)

	Returns a rotated copy of this image. This method returns a
copy of this image, rotated the given number of degrees counter
clockwise around its centre.

	Parameters:	
	angle – In degrees counter clockwise.

	filter – An optional resampling filter. This can be
one of NEAREST (use nearest neighbour), BILINEAR
(linear interpolation in a 2x2 environment), or BICUBIC
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode “1” or “P”, it is
set NEAREST.

	expand – Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
input image.

	Return type:	:class:Image object

	
save(fp, format=None, **params)

	Saves this image under the given filename. If no format is
specified, the format to use is determined from the filename
extension, if possible.

Keyword options can be used to provide additional instructions
to the writer. If a writer doesn’t recognise an option, it is
silently ignored. The available options are described later in
this handbook.

You can use a file object instead of a filename. In this case,
you must always specify the format. The file object must
implement the seek, tell, and write
methods, and be opened in binary mode.

	Parameters:	
	file – File name or file object.

	format – Optional format override. If omitted, the
format to use is determined from the filename extension.
If a file object was used instead of a filename, this
parameter should always be used.

	params – Extra parameters to the image writer.

	Returns:	None

	Raises:	KeyError If the output format could not be determined
from the file name. Use the format option to solve this.

	Raises:	IOError If the file could not be written. The file may
have been created, and may contain partial data.

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek beyond the
end of the sequence, the method raises an EOFError exception. When a
sequence file is opened, the library automatically seeks to frame 0.

Note that in the current version of the library, most sequence formats
only allows you to seek to the next frame.

	Parameters:	frame – Frame number, starting at 0.

	Exception:	EOFError If the call attempts to seek beyond the
end of the sequence.

See Image.tell()

	
show(title=None, command=None)

	Displays this image. This method is mainly intended for debugging
purposes.

On Unix platforms, this method saves the image to a temporary PPM
file, and calls the xv utility.

On Windows, it saves the image to a temporary BMP file, and uses the
standard BMP display utility to show it (usually Paint).

	Parameters:	title (None or string) – Optional title to use for the image window,
where possible.

	
size = (0, 0)

	

	
split()

	Split this image into individual bands. This method returns a tuple of
individual image bands from an image. For example, splitting an “RGB”
image creates three new images each containing a copy of one of the
original bands (red, green, blue).

	Returns:	A tuple containing bands.

	
tell()

	Returns the current frame number.

	Returns:	Frame number, starting with 0.

See Image.seek()

	
thumbnail(size, resample=0)

	Create thumbnail representation (modifies image in place)

Make this image into a thumbnail. This method modifies the image to
contain a thumbnail version of itself, no larger than the given size.
This method calculates an appropriate thumbnail size to preserve the
aspect of the image, calls the Image.draft() method to
configure the file reader (where applicable), and finally resizes the
image.

Also note that this function modifies the Image object in place. If
you need to use the full resolution image as well, apply this method
to a Image.copy() of the original image.

	Parameters:	
	size – Requested size.

	resample – Optional resampling filter. This can be one of of
NEAREST, BILINEAR, BICUBIC, or ANTIALIAS (best quality). If omitted,
it defaults to NEAREST (this will be changed to ANTIALIAS in a future
version).

	Return type:	None

	
tobitmap(name='image')

	Return image as an XBM bitmap

	
tostring(encoder_name='raw', *args)

	

	
transform(size, method, data=None, resample=0, fill=1)

	Transforms this image. This method creates a new image with the given
size, and the same mode as the original, and copies data to the new
image using the given transform.

	Parameters:	
	size – The output size.

	method – The transformation method. This is one of
EXTENT (cut out a rectangular subregion), AFFINE
(affine transform), PERSPECTIVE (perspective
transform), QUAD (map a quadrilateral to a
rectangle), or MESH (map a number of source quadrilaterals
in one operation).

	data – Extra data to the transformation method.

	resample – Optional resampling filter. It can be one of
NEAREST (use nearest neighbour), BILINEAR
(linear interpolation in a 2x2 environment), or
BICUBIC (cubic spline interpolation in a 4x4
environment). If omitted, or if the image has mode
“1” or “P”, it is set to NEAREST.

	Return type:	:class:Image object

	
transpose(method)

	Transpose image (flip or rotate in 90 degree steps)

	
verify()

	Verify file contents.

AWARE Backend

Graphics Magick Backend

High-Level

Low-Level

Java Backend

High-Level

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 NativeImaging	

 	
 	
 NativeImaging.api	

Index

 C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

C

 	
 	convert() (NativeImaging.api.Image method)

 	
 	copy() (NativeImaging.api.Image method)

 	crop() (NativeImaging.api.Image method)

D

 	
 	draft() (NativeImaging.api.Image method)

F

 	
 	filter() (NativeImaging.api.Image method)

 	format (NativeImaging.api.Image attribute)

 	
 	format_description (NativeImaging.api.Image attribute)

 	fromstring() (NativeImaging.api.Image method)

G

 	
 	getbands() (NativeImaging.api.Image method)

 	getbbox() (NativeImaging.api.Image method)

 	getcolors() (NativeImaging.api.Image method)

 	getdata() (NativeImaging.api.Image method)

 	
 	getextrema() (NativeImaging.api.Image method)

 	getpalette() (NativeImaging.api.Image method)

 	getpixel() (NativeImaging.api.Image method)

 	getprojection() (NativeImaging.api.Image method)

H

 	
 	histogram() (NativeImaging.api.Image method)

I

 	
 	im (NativeImaging.api.Image attribute)

 	
 	Image (class in NativeImaging.api)

 	info (NativeImaging.api.Image attribute)

L

 	
 	load() (NativeImaging.api.Image method)

M

 	
 	mode (NativeImaging.api.Image attribute)

N

 	
 	NativeImaging.api (module)

O

 	
 	open() (NativeImaging.api.Image class method)

P

 	
 	palette (NativeImaging.api.Image attribute)

 	paste() (NativeImaging.api.Image method)

 	point() (NativeImaging.api.Image method)

 	
 	putalpha() (NativeImaging.api.Image method)

 	putdata() (NativeImaging.api.Image method)

 	putpalette() (NativeImaging.api.Image method)

 	putpixel() (NativeImaging.api.Image method)

Q

 	
 	quantize() (NativeImaging.api.Image method)

R

 	
 	readonly (NativeImaging.api.Image attribute)

 	
 	resize() (NativeImaging.api.Image method)

 	rotate() (NativeImaging.api.Image method)

S

 	
 	save() (NativeImaging.api.Image method)

 	seek() (NativeImaging.api.Image method)

 	
 	show() (NativeImaging.api.Image method)

 	size (NativeImaging.api.Image attribute)

 	split() (NativeImaging.api.Image method)

T

 	
 	tell() (NativeImaging.api.Image method)

 	thumbnail() (NativeImaging.api.Image method)

 	tobitmap() (NativeImaging.api.Image method)

 	
 	tostring() (NativeImaging.api.Image method)

 	transform() (NativeImaging.api.Image method)

 	transpose() (NativeImaging.api.Image method)

V

 	
 	verify() (NativeImaging.api.Image method)

 nav.xhtml

 Table of Contents

 		Native Imaging

 		Common API

 		AWARE Backend

 		Graphics Magick Backend

 		High-Level

 		Low-Level

 		Java Backend

 		High-Level

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

